PETSc and BOUT++

Jed Brown

Peter Brune, Emil Constantinescu,
Debojyoti Ghosh, Lois Curfman McInnes
{jedbrown, brune, emconsta, ghosh, curfman}@mcs.anl.gov

Mathematics and Computer Science Division Argonne National Laboratory

BOUT++ Workshop, 2013-09-04

Portable Extensible Toolkit for Scientific computing

Philosophy: Everything has a plugin architecture

- Vectors, Matrices, Coloring/ordering/partitioning algorithms
- Preconditioners, Krylov accelerators
- Nonlinear solvers, Time integrators
- Spatial discretizations/topology*

Example

Vendor supplies matrix format and associated preconditioner, distributes compiled shared library. Application user loads plugin at runtime, no source code in sight.

Portable Extensible Toolkit for Scientific computing

Algorithms, (parallel) debugging aids, low-overhead profiling

Composability

Try new algorithms by choosing from product space and composing existing algorithms (multilevel, domain decomposition, splitting).

Experimentation

- It is not possible to pick the solver a priori.
 What will deliver best/competitive performance for a given physics, discretization, architecture, and problem size?
- PETSc's response: expose an algebra of composition so new solvers can be created at runtime.
- Important to keep solvers decoupled from physics and discretization because we also experiment with those.

Outline

Time Integration

Nonlinear solvers

Comments on performance

Trade-offs in time integration

- Properties
 - Nonlinear stability (e.g., positivity preservation)
 - Stability along imaginary axis
 - *L*-stability (damping at infinity)
 - Implicitness and reuse
- What is expensive?
 - Function evaluation
 - Operator assembly/preconditioner setup
 - How much can be reused for how long?
 - Implicit solves
 - Can we find better solver algorithm?
 - More effort in setup?
- What is "convergence"?
 - Wave propagation: implicitness useless for convergence in a norm
 - Non-norm functionals could be robust

Reusing implicit solver setup

- Linearization
- MG interpolants
- Lagged preconditioner
- Modified Newton
- Quasi-Newton
- IMEX with linear implicit part
- Rosenbrock/W

IMEX time integration in PETSc

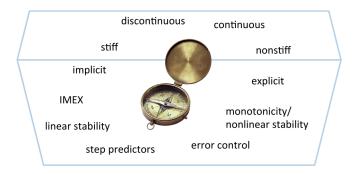
Additive Runge-Kutta IMEX methods

$$G(t,x,\dot{x}) = F(t,x)$$

 $J_{\alpha} = \alpha G_{\dot{x}} + G_{x}$

- User provides:
 - FormRHSFunction(ts, t, x, F, void *ctx);
 - FormIFunction(ts,t,x, \dot{x} ,G,void *ctx);
 - FormIJacobian(ts,t,x, \dot{x} , α ,J,Jp,mstr,void *ctx);
- Can have *L*-stable DIRK for stiff part *G*, SSP explicit part, etc.
- Orders 2 through 5, embedded error estimates
- Dense output, hot starts for Newton
- More accurate methods if *G* is linear, also Rosenbrock-W
- Can use preconditioner from classical "semi-implicit" methods
- FAS nonlinear solves supported
- Extensible adaptive controllers, can change order within a family
- Easy to register new methods: TSARKIMEXRegister()
- Single step interface so user can have own time loop
- Same interface for Extrapolation IMEX, LMS IMEX (in development)

Time integration method design

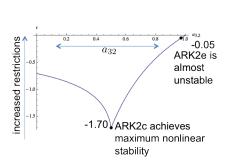


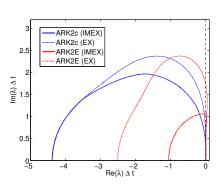
- Select order, number of stages, required properties
- Optimize properties like SSP coefficient, accuracy, or linear stability
- TSARKIMEXRegister("my-method", ...coefficients...)
- -ts_type arkimex -ts_arkimex_type my-method

Example: Additive Runge-Kutta design

- 3-stage, second order, *L*-stable implicit part
- one-parameter family of solutions

ARK2c Maximize SSP coefficient
ARK2E Minimize leading error coefficient





Some TS methods

- TSSSPRK104 10-stage, fourth order, low-storage, optimal explicit SSP Runge-Kutta $c_{\text{eff}} = 0.6$ (Ketcheson 2008)
- TSARKIMEX2E second order, one explicit and two implicit stages, *L*-stable, optimal (Constantinescu)
- TSARKIMEX3 (and 4 and 5), L-stable (Kennedy and Carpenter, 2003)
- TSROSWRA3PW three stage, third order, for index-1 PDAE, A-stable, $R(\infty) = 0.73$, second order strongly A-stable embedded method (Rang and Angermann, 2005)
- TSROSWRA34PW2 four stage, third order, *L*-stable, for index 1 PDAE, second order strongly *A*-stable embedded method (Rang and Angermann, 2005)
- TSROSWLLSSP3P4S2C four stage, third order, *L*-stable implicit, SSP explicit, *L*-stable embedded method (Constantinescu)

Adaptive controllers

- "Stiff" waves are not stiff if one wants to converge in a norm
- PETSc integrators provide embedded methods to estimate errors
- Automatic controllers optimize local truncation error and nonlinear solve cost
- User can register custom controllers
- Use a priori knowledge of the physics, robust functionals
- Choose from list of methods, choose next step size

Outline

Time Integration

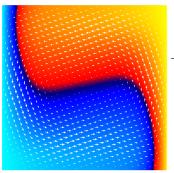
Nonlinear solvers

Comments on performance

Which nonlinear solver?

- Global linearization (NewtonLS, NewtonTR)
 - Preconditioning libraries for assembled matrices
 - Low arithmetic intensity
- Quasi-Newton
 - Build low-rank updates to Jacobian inverse
 - Brown and Brune, "Low-rank quasi-Newton updates for robust Jacobian lagging in Newton-type methods", ANS MC13.
- Nonlinear multigrid and domain decomposition
 - ASPIN (left-preconditioned nonlinear Schwarz), also right-preconditioned
 - Full Approximation Scheme with linear or nonlinear smoothers
 - More intrusive, but freakishly efficient for difficult problems
- Nonlinear GMRES, Anderson mixing, nonlinear CG
 - Accelerator for nonlinear preconditioning
 - Good alternative to matrix-free finite differencing
 - More robust line search possible: operates in reduced basis

- high Rayleigh number (Ra = 2e4) flow
- time, iterations, V-cycles, intensity (GFLOPs), MPI reductions
- just a demonstration; 64 cores, 4k unknowns per core
- Newton-(GMRES-MG) with nonlinear elimination vs. NGMRES-FAS



	NK-MG	NASM*(NK-MG)	NGMRES-FAS
time (sec)	7	4	1
its.	24	12	22
V-Cycles	354	155	22
GFLOPs	11	14	32
MPIReduct	4129	2711	775

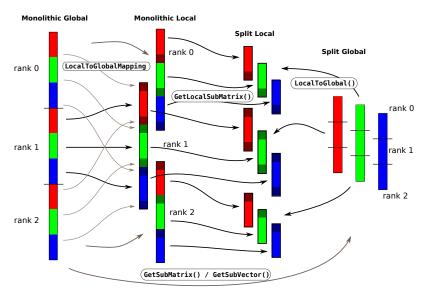
The Great Solver Schism: Monolithic or Split?

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
 - approximate commutators SIMPLE, PCD, LSC
 - segregated smoothers
 - Augmented Lagrangian
 - "parabolization" for stiff waves
- X Need to understand global coupling strengths
- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.



Work in Split Local space, matrix data structures reside in any space.

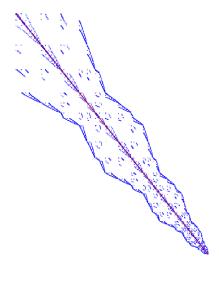
Outline

Time Integration

Nonlinear solvers

Comments on performance

Bottlenecks of (Jacobian-free) Newton-Krylov



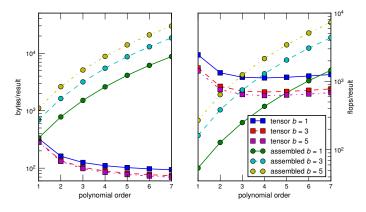
- Matrix assembly
 - integration/fluxes: FPU
 - insertion: memory/branching
- Preconditioner setup
 - coarse level operators
 - overlapping subdomains
 - (incomplete) factorization
- Preconditioner application
 - triangular solves/relaxation: memory
 - coarse levels: network latency
- Matrix multiplication
 - Sparse storage: memory
 - Matrix-free: FPU
- Globalization

Scalability Warning

The easiest way to make software scalable is to make it sequentially inefficient. (Gropp 1999)

- We really want efficient software
- Need a performance model
 - memory bandwidth and latency
 - algorithmically critical operations (e.g. dot products, scatters)
 - floating point unit
- Scalability shows marginal benefit of adding more cores, nothing more
- Constants hidden in the choice of algorithm
- Constants hidden in implementation

Performance of assembled versus unassembled



- High order Jacobian stored unassembled using coefficients at quadrature points, can use local AD
- Choose approximation order at run-time, independent for each field
- Precondition high order using assembled lowest order method
- lacktriangle Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%

Hardware Arithmetic Intensity

Operation	Arithmetic Intensity (flops/B)
Sparse matrix-vector product	1/6
Dense matrix-vector product	1/4
Unassembled matrix-vector product	≈ 8
High-order residual evaluation	> 5

Processor	BW (GB/s)	Peak (GF/s)	Balanced AI (F/B)
E5-2670 8-core	35	166	4.7
Magny Cours 16-core	49	281	5.7
Blue Gene/Q node	43	205	4.8
Tesla M2090	120	665	5.5
Kepler K20Xm	160	1310	8.2
Xeon Phi	150	1248	8.3

